11 Jun 2016

The effects of radiation on our health

The effects of radiation on our health

The mission of EPA’s Radiation Protection Program is to protect human health and the environment from unnecessary exposure to radiation. This page provides basic information about the health effects of radiation. EPA uses current scientific understanding of the health effects of radiation exposure to create protective standards and guidance.
Ionizing radiation has sufficient energy to cause chemical changes in cells and damage them. Some cells may die or become abnormal, either temporarily or permanently. By damaging the genetic material (DNA) contained in the body’s cells, radiation can cause cancer. Fortunately, our bodies are extremely efficient at repairing cell damage. The extent of the damage to the cells depends upon the amount and duration of the exposure, as well as the organs exposed.
A very large amount of radiation exposure (acute exposure), can cause sickness or even death within hours or days. 
In general, the amount and duration of radiation exposure affects the severity or type of health effect. There are two broad categories of health effects: chronic (long-term) and acute (short-term).
Chronic Exposure
Chronic exposure is continuous or intermittent exposure to radiation over a long period of time. With chronic exposure, there is a delay between the exposure and the observed health effect. These effects can include cancer and other health outcomes such as benign tumors, cataracts, and potentially harmful genetic changes.
Low Levels of Radiation Exposure
Current science suggests there is some cancer riskriskThe probability of injury, disease or death from exposure to a hazard. Radiation risk may refer to all excess cancers caused by radiation exposure (incidence risk ) or only excess fatal cancers (mortality risk). Risk may be expressed as a percent, a fraction, or a decimal value. For example, a 1% excess risk of cancer incidence is the same as a 1 in a hundred (1/100) risk or a risk of 0.01. from any exposure to radiation. However, it is very hard to tell whether a particular cancer was caused by very low doses of radiation or by something else. While experts disagree over the exact definition and effects of “low dose,” U.S. radiation protection standards are based on the premise that any radiation dose carries some risk, and that risk increases directly with dose.
This method of estimating risk is called the “linear no-threshold model (LNT LNT) The assumption that the risk of cancer increases linearly as radiation dose increases. This means, for example, that doubling the dose doubles the risk and that even a small dose could result in a correspondingly small risk. Using current science, it is impossible to know what the actual risks are at very small doses.).” The risk of cancer from radiation also depends on age, sex, and factors such as tobacco use.

Effects of Radiation on the Human Body

Radiation effects on the body
HairBrainThyroidBlood SystemHeartGastrointestinal TractReproductive Tract

Click on a number to learn about the effects of radiation on the body


The losing of hair quickly and in clumps occurs with radiation exposure at 200 rems or higher.


Since brain cells do not reproduce, they won’t be damaged directly unless the exposure is 5,000 rems or greater. Like the heart, radiation kills nerve cells and small blood vessels, and can cause seizures and immediate death.


The certain body parts are more specifically affected by exposure to different types of radiation sources. The thyroid gland is susceptible to radioactive iodine. In sufficient amounts, radioactive iodine can destroy all or part of the thyroid. By taking potassium iodide, one can reduce the effects of exposure.

Blood System

When a person is exposed to around 100 rems, the blood’s lymphocyte cell count will be reduced, leaving the victim more susceptible to infection. This is often refered to as mild radiation sickness. Early symptoms of radiation sickness mimic those of flu and may go unnoticed unless a blood count is done.According to data from Hiroshima and Nagaski, show that symptoms may persist for up to 10 years and may also have an increased long-term risk for leukemia and lymphoma.


Intense exposure to radioactive material at 1,000 to 5,000 rems would do immediate damage to small blood vessels and probably cause heart failure and death directly.

 Gastrointestinal Tract

Radiation damage to the intestinal tract lining will cause nausea, bloody vomiting and diarrhea. This is occurs when the victim’s exposure is 200 rems or more. The radiation will begin to destroy the cells in the body that divide rapidly. These including blood, GI tract, reproductive and hair cells, and harms their DNA and RNA of surviving cells.

Reproductive Tract

Because reproductive tract cells divide rapidly, these areas of the body can be damaged at rem levels as low as 200. Long-term, some radiation sickness victims will become sterile.

Source :